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Glossary of Special Terms a d Symbols

= # of alternatives in a multiple
choice question

a-value. ----- ct-=scrim iaaltion index

ASI = --ternative Similarity Index
b-value = dtfficulty index'
BME = aayesian Modal Estimation
c-values - ,:_seude--,.....ssing index

CRT - :athode ;a:. Tube device
d-value = :Dirt '-:trial correlation
d.f. = oivr1 ution function, an ogive
E = Error-cc-e
e. - rase : ' aatural logariAm
exp() = a ..ed to the power of whatever

-5 tit:. parenthesis after the
Dtp-

f.f. = -z-obenc:. function, bell shaped

.

I(9) = 7,,st Information Curve
I(9,u ) = _T:.:em Information Function

ICC -=::-. gem Characteristic Curve, same

IRF
IIF = 7t-em-Information Function, 1(9,u)
IRF = tem Response Function
IRT = item Response Theory
R-20 = Kuder-Richardson Formula 20

1111
=-Likelihood

(0,1.7 = Logistic Frequency Function
L(91U) = Likelihood of 9, given U
L(U19) = Likelihood of U, given 9
m . ---- slope of the ogive at the b-value
MAPL - Minimum Acceptable Performance

Level
MLE -Maximum Likelihood Estimation
N(0,1) Normal
p-value = proportion of e;Ca4inees selecting

an item alternative
P.. = P (9) = Probability of getting

item correct, given 9

Qi 1-(9) = Probability of-getting

.tem wrong, given 9
= item biserial correlation

= tetrachoric correlation

= rliability of classical test

REC =-T-..ielative Efficiency Curve, ratio

et TIC's

r
g9

r
gh

rxx

5

S9AYES = Simplified Bayesian, same as
BME

= standard deviatic-
SEE = Standard Error r istimate

= Score Information- :urve
= Subject Matter rt
= True score_ Ob., #_ oed score -

Error
= Test Infor117,ati:---- 1(A),

lEI(9,u)
JSCSC = U.S. Civ= :se-,ice Commission

= response ^rr -esponse
pattern

= response. 1 -J response
is corre:- = 0 if response
is wrong

w(9) = optimal ,--eig -)f an item

= Oservec cor

= Mean
= Theta, --e abi ity scale

= Integra ign

= Psi, loc;7ic wive
= Phi, no-r-,1 oc-ve

= Summati7 of a series-of number

TT = Product == a series of numbers



BOOKMARK AND GLOSSARY

of special terms and symbols

. A = # of alternatives' in a multiple
choice question

. a-value = discrimination index

. ASI = Alternative Similarity IndeX
. b-value = difficulty index
. BME = Bayesian Modal Estimation
. c-value = pseudo-guessing index
. CRT = Cathode Ray Tube device
. d-value = point biserial correlation
. d.f. = distribution function, an ogive
. E = Error score
. e = base of natural logarithm
. exp() = e raised to the power of whatever

is in the parenthesis after the
exp

. f.f. = frequency function, bell shaped
curve

. I(9) = Test Information Curve

. I(9,u) = Item information Function

. ICC = Item Characteristic Curve, same
. - as IRF
. IIF = Item Information Function, I(9,u)
. IRF --"Item Response Function.

. IRT = Item Response Theory
cc' . KR-20 = Kuder-Richardson Formula 20

. L = Likelihood

. L(0,1.7)= Logistic Frequency Function

. = Likelihood of 9, given U

. L(U19) = Likelihood of U, given.9

. m = slope of the ogive at the b-value

. MAPL = Minimum Acceptable Performance
Level

MLE = Maximum Likelihood Estimation
. N(0,1) = Normal f.f.
p-value . proportion of examinees selecting

an item alternative
. P. = P (9) = Probability of getting

item correct, given 9

Q. = Qi(9) = Probability of getting

item wrong, given 9
rgg = item biserial correlation

r
gh

= interitem tetrachoric correlation

. r
XX

= reliability of classical test
theory

RFC = Relative Efficiency Curve, ratio
of TIC's

over



SBAYES = Simplified Bayesian, same as
BME

SD = standard deviation
SEE. = Standard Error of Estimate
SIC = Score Information Curve
SME = Subject Matter Expert

= Tree score, Observed score -
Error

TIC = Test Informattmn Curve, I(9),
11(9,u)

USCSC = U.S. Civil Service Commission
U response vector, response

pattern
u = response, ui = 1 if response

is correct & u. = 0 if response
is wrong

W(9) = optimal weight of an item
X - Observed score

- Mean
9 = Theta, the ability scale

jr = Integral sign

= Psi, logistic ogive

= Phi, normal ogive

= Summation of a series of numbers

TI = Product of a series of numbers
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PREFACE

One year *atm I hpd never heard of latent trait theOry, an :item

characteristic curve, or Fred Lord. On my first reading of Lord and

Novick (1968) Chapters 16 and 17, I understood absolutely nothing.

After several hours of study on my second reading, I finally comprehended

one simple equation. During tl)e next several months I reread parts

of Lord and Novick as many as 20 times, I taught myself some differ-

ential calculus, integral calculus, mathematical statistics, probability

theory and linear algebra, I attended Fred Lord's course in Item.

Response Theory at the Educatiotwal Testing Service, Princeton, NJ,

and I read several publications on Item Response Theory.

I have, now gotten to the point where I am able to use Item

-Response Theory fcr my purposes, although there is still much that I

do not understand.

Upon reflection, I find that, as is true in many sciences, it is

not necessary to fully.sun8erstand the theoretical background and

mathematicaldevelopment in order to apply the results of the model.

It is widely acknowledged in the, field that one of the main

reasons that item response theory has been so slow to catch'on among

testing practitioners is the mathematical complexity, of the literature.

Most of the literature is written with language and notation that is

standard for the researchers. -However, that language and notation

is confusing to the thousands of testing practitioners, whose technical.

training amounts to a couple of courses in statistics and tests and

measurement, if that much. On the other hand, many of the concepts

used in the literature are not difficult to understand, if explained

in less esoteric language and with a few examples.



- Therefore, it became my resolve that no testing practitioner, such ..

as I, should have to go through what I went through in order to.

gain a basic understanding of itekresponse-theOry.,, The piirpose of

this paper is to fulfill that resolve. ,

Since very little of.this pager is original with Me, by

rights there should beta reference for nearly every Sentence or

paragraph. Such complete referenCeS', however, will not be included

because they would be out of place for a primer, and usually not of

interest to the novice. 4t, primary references are Lord & Novick (196G)

and Lord (in preparation). Some references will be included to direct
,

the reader to more thorough and detailed explanations. Other refer-

ences will be included where authoritative support is deemed desirable.

A primer is necessarily incomplete. It is also inaccurate when

it contains oversimplifications which apply to the general case, but

do not apply to extreme, unusual, or uninteresting cases. This paper

will be guilty'of such generalities and rules of thumb.

Other excellent; less elementary introductory material is also

available. (See Baker, 1977; Hambleton & Cook, 1977;' Sympsbn, 1.977).

I am indebted:to ENS DeAa Cook, ENS Pamela. Crandall, ENS Charles

Pastine, and LTJG LdrryYOUng for their assistance in the analysis of.

data.
0 ,

ty appreciations for the many suggestions and corrections made by

the several readers and reviewers is gratefully acknowledged. They

are: John A. Burt, Joseph Cowan; MyrOn A. Fischl, Steven Gorman, Karen

Jones, Frederick M. Lord, James R:'McBride, W. Alan Nicewander,

Malcolm J. Ree, and James B. Sympson.

I would also like to thank YN2 Ron Smith for his excellent art
work, and Jim Walls f.ir his systems analysis and computer pro-
gramming.

THOMAS A. WARM

January 22, 1978
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CHAPTER 1

INTRODUCTION

1.1 Item Response Theory (IRT) is the most significant development

in psychometrics in many years. It is, perhaps, to psychometrics

what Einstein's relativity theory is to physics. I do hot doubt that

during the next decade it will sweep the field of psychometrics. It

has been said that IRT allows one to answer any question. about an

item (test question), a test, or an examinee, that one is entitled to

\ask. Although this statement is somewhat circular, it will give you

an idea of the terrific power of IRT and of the mathematical estima-

tion methods involved.

The most common application of IRT is with multiple-choice

questions in an ability test. That use will be the thrust of this

paper, although IRT also applies as well to free response (fill in)

items. -I make no distinction between ability , knowledge testing.

IRT applies to tests for both. Thus, the v will be used

for both types of tests. No application Irsonality or

interest testing will be discussed.

1.2 If we give several tests in the same subject matter area to a

group of examinees, we find that in general the same examinees score

high on the tests and the same examinees score low. In other words,

we find consistency in the performance-of examinees on the different

tests.

To explain this consistency we assume that there is something

inside the examinees that causes them to score consistently. We call

that something a menta1.trait.



'In the vernacular the ;iord "trait" implies an innate, inherited

characteristic. We don't necessarily mean that. We mean only that

characteristic of the examinee that causes consistent performance on

the tests, whateyer,.if anything, it is..

No one has found a physical referent for a mental trait, and few

really expect to. It is sometimes tempting to think of a trait as

having a physical referent like a brain engram, but that is always

unnecessary -. In this sense, a trait is an intervening variable, as

opposed to a hypothetical construct. Since the mental trait has no

known physical referent, it is never observed directly. Therefore,

it is called a "Patent" trait.,

1.3 The scale of the latent trait is traditionally given the name of

° the Greek letter theta (A). I will use the terms theta, ability level,

amount of trait, and amount of subject-matter-knowledge, interchangeably.

Th a is a continuum from minus infinity (-oo) to plus infinity (+0o).
, .

It ha no-natural zero point or 'unit. Therefore, the zeropoint and

um re often taken as the mean and standard deviation, respectively,

of some reference sample of examinees. Thus, values of A usually. vary

from -3 to +3, but-may be observed outside that range. The As of a

sample need not be distributed normally.

1.4 When an examinee walks into a testing room, he brings with him his

theta.* The purpose.of the test, then, is to measure the relative

position o; the examinees on the theta scale. The test interprets the

examinee's theta and produces a measurement of ability, which is often

the raw (number right) score. The test is the measuring instrument.

Often measurement of an-ability with a test is made analogous to

measurementof height with a tape rule. ere is an important

difference. Height, whether measured bvan English rule or metric rule,

is always on an equal interval scale. istograms of a group of people

will always look the same; except .f some linear stretching of a

scale.

*The generic masculine pronouns will be used for convenience.

12



That is not the case with testing. The histograms- of raw scores

of the same people on tw tests will seldom look the same, even with

linear stretching of a cale. That is because each test has its own

peculiar scale (also ca led metric). The peculiarity of a test's

- metric distorts the distribution of examinees. Until IRT there has

been no way to identify the peculiar scale of a test.

13
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CHAPTER 2

Classical Test Theory vs. Item Response Theory

2.1 Classical test theory has been developed over a period of many

years. Gulliksen (1950) is an excellent presentation of classical test

theory.

Piost testing practitioners use classical test theory, whether they

know it or not. The basic tools of most testing practitioners are:

a. p-value = proportion of examinees selecting an item alter-

native (also called "item difficulty"),

b. d-valde point-biserial correlation between the item al-

ternative and the test (some use the biserial correlation)(also called
"item discrimination"),

c. mean of examinees' (number right) scores,

d. standard deviation of examinees' scores,

e. skewness and kurtosis of examinees' scores,

f. reliability of the test, usually KR-20, the Kuder-Richardson.

Formilla 20 (aspecialcase of Cronbach's coefficient alpha).

Anyone whose test analysis,is principally based on the statistics

listed above is using dlaSsical test theory. The problem with those

statistics is that they are relative to the characteristics of the test

and-of the examinees.



The p-value is relative to the ability level of the examinees.

The same item given to a high ability group and low ability'group will

get two different'p-values for the two groups. It can be shown that

p- values are not true measures of relative item difficulty. It is not

.uncommon for items measuring the same ability to reverse the order-of

their p- values when given to,groups of different average ability. For

example, item A may have a higher p-value than item B for one group of

examinees, but have a lower p-value than item B for a different group.

This effect is not a matter of sampling error.

The d-value is relative to the homogeneity of the ability levels

of the examinees in the sample, the subject-matter homogeneity of the

items in the test, and the dispersion of p-values of itemsin the test.

The same item, given to a group of examinees who are similar in ability

and to another group with a wide range of ability, will produce two

different d-values for the two groups. Similarly, an item included in

a test with:other items that are homogeneous in content and p-valUe

will:get a d-value different from the d7value it will receive in a

heterogene6us test..

The mean, standard deviation, skewness and kurtosis will also vary

according to the characteristics of the test and examinees.

.The reliability is relative to the standard deviation of the test,

and to the p-values and d-values of the items in the test, all of which

are dependent upon the particdlar abilities of the examinees and the

characteristics of the test.

The following quote gives another liability of using classical

test,theory in culture-fair testing studies:

"It can-be shown that classical parameters '(e.g. p-value) will

generally not be linearly related across subgroups of a population..

This means that the'test.for cultural bias using classical parameters

can lead .c.o an artifactual detection of bias." (Pine, 1977, p.40)

16
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Clearly, classical test theory statistics are meaningful only in

an extremely limited situation, i.e., when the same 'tem is given to

the same population as
ac

part,of.strictly parallel tests. Such a situ-

ation rarely occurs. FurthermOre, the basic precepts and definitions

of classical test theory are, untestable, i.e. they are tautologies.

They are simply taken as true without any way to empirically determine

their relevance to reality. Some are assumed to be true even when this

does not appear to'be warranted. Thus, no one knows if the classical

test model applies to any real test.

2.2 In contrast IRT makes possible item and test statistics which are

dependent neither on the characteristics of the examinees nor on the

other items in the test. They are invariant. With the>item statistics

it becomes possible to describe in precise terms the characteristics ofc-

the test before'the test is administered. This capability allows one to

construct a test that is highly efficient in accomplishing the purpose

of the test. It also provides an extremely, powerful tool for special

studies, such is item cultural-biis.

Moreover, the assumptions of IRT are explicit and have the po-

tential of empirical testing. It is possible to discover if the data

reasonably meet the assumptions.

17
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CHAPTER 3

A Brief History of Item Response Theory

3.1 The origin of latent trait theory can be traced to Ferguson (1942)

and Lawley (1943). Item Response Theory is just one of several models

under latent trait theory. The Rasch model is another.

3.2 Other early publications using some of the same concepts are

Brogden (1946), Tucker (1946) Carroll (1950), and Crobach and Warring-

ton (1952).

3.3 In 1952, Lord published his Ph.D. dissertatipn in which he pre-

sented IRT as a model or theory its own right. At that time he

calledit Item Charadteristic Curve Theory. Thus,'Lord is:considered

the father and founder of IRT. Shortly after publishing his disser-

tation, Lord stopped mirk on IRT for ten years, due to a seemingly

intractable problem with it.*

3.4 In 1960, Ratch, (1960) published his one-parameter sample-free

model-. The Rasch model stirred much interest and considerable work was

done on it during the next decade. Its leading proponent in the U.S

is Benjamin Wright, a psychoanalyst at the University of Chicago. (See

- Wright,-1977 for references).

3.5 In'1965, Lord (1965)' conducted a massive s.;0, using a sample
size of greater'than 100,000. That study showed that the "problem",

which had deterred his work for so long, was not really a.probiem, and

that IRT was appropriate for real life multiple-choice tests. With

that-study Lord began work again on IRT.

*This probleM is discussed in Section 14.2

.19



3.6 In 1968, Lord and Novick published a psychometrics textbook,

within which were four Chapters (17.20) by Allan Birnbaum (1968), a

well-known statistician (now deceased). Birnbaum's chapters worked out

in detail the mathematics of the two and three parameter normal ogive

and logistic models.*

3.7 Soon thereafter Urry (1970) completed his Ph.D dissertation in

which he compared the one, two, and three parameter models. He con-

cluded that the three parameter model best described the real world for

multiple-choice tests.

3.8 Since Urry',s dissertation, much work has been done on all three

models (i.e., one, two, and three parameter), but the three parameter

model is now receiving most of the attention because it best describes

reality. To'wit, I shall deal with the 3-parameter model only.

3.9 Much of the work on the 3-parameter model is coming from 3 pri-

ncipal sources. The sources are:

a. Frederic M. Lord, Distinguished Research Scientist,- Educa-

tional Testing Service, Princeton, NJ.

b. Vern W. Urry, Personnel Research Psychologist,-United States

Civil Service Commission, Washington, D.C.

c. David J. Weiss, Prof. of Psychology, Psychometric Methods

Program, University of Minnesota, Minneapolis, MN.

There are, of course, many other highly productive researchers

publishing'excellent studies. Failure to include them in this, list is

more an indication of my limited exposure than of the significance of

their contributions.

*The normal ogive and logistjc,ogive will be compared briefly in.

Chapter 4.

20'

19



3.10 The United States Civil Service Commission has adopted a pa-

rticular application of IRT as official policy. The ve U.S. armed

forces (including the U. S. Coast Guard) are alSo'invEstigating the

application of IRT.

3.11 In 1977 Lord changed the name of his model from Item Character-

istic Curve Theory to Item Response Theory.

L
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N(0,1)Ey V27-71.

I.Te
-1.7Z

L(0,1.7)7Y=
(1+6-1.712

-2 0

Figure 4. 1. Frequency function (f.f.) for' the Normal
Curve ( + + +) and Logistic Curve (....).
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CHAPTER 4

The Normal Ogive and Logistic Ogive

4.1 I trust the reader will recognize the normal curve plotted in

Figure .4.1 with the pluses (++++). It has a mean =0, and standard

deviation =1. The formula for this normal curve is identified in

Figure 4.1 as N(0,1).

4.2 A bell-shaped curve like this is called a frequency function

(f.f.). It is called a frequency function even when the ordinate'

(vertical axis) is defined as frequency, proportion, percent, or

density (Kendall and Stuart, 1977, p. 13). Therefore, we call the

normal curve, the "normal frequency function."

4.3 Superimposed over the.normai f.f. in Figure 4.1 is a logistic*

curve or ogisti-c frequency function, plotted with dots (

This logistic f.f. also has a mean =0 and standard deviation -;:u.:1.0.

The formula for this logistiC,f.f. is identified in Figure 4.1 as

L(0,1.7): The 1.7 in the exponent of the formula is chosen to allow

the logistilc f.f.. to-approximate the normal f.f as closely as possible.

he actual value is 1.6679, which is rounded to 1.7. In some of the

literature the 1.7 is represented by the upper case letter D. The

letter e is the base of natural logarithms; etAe 2.718281828.

4.4 The reader will also recognize the S-shaped curve in'Figure 4.4

as the normal cumulative frequency.curve. An S-shaped curve is

called an ogive.** This curve gives the proportion of area under the

normal curve (Figure 4.1) that lies to the left of each point on the

abscissa (horizontal axis).

*pronounced lojiStic

**pronounced ojive



4 k

Figure 4,4. Distribution function (d.f.)for the
N (0,1) and L (0,1.7) frequency functions,.

4,5 An ogive like this is called a distribution function (d,f.). It

is called a distribution function even when the ordinate is defined as

cumulative frequency, cumulative proportion, cumulative percent, or

cumulative area (Kendall & Stuart, 1911, p.13). Therefore, we call the

curve in Figure 4,4 a 'normal diStribution function," or a "normal

ogive ". The forrula.for this normal d,f. is identified in Figure 4.4

asiN(0,1),'

4.6 Also in Figure 4.4, but not discernable, is the logistic ogive

(or logistic d.f,) for the logistic f.f. in Figure 4.1. It is not

discernable, because it is so close to the normal ogive that on this

scale the two curves merge together in the width of the ink line. A

small portion has been magnified to a larger scale (10x)i so thatthe

difference may be seep. The magnified area was chosen at the place

where the 2 ogives are farthest apart. The readercan verify that at

any point on the abscissa the 2 ogives are always less than ,01 apart

On the ordinate, as is indicated by the inequality under the magni-

fication in Figure 4.4. The formula for this logistic d.f. is id-

entifted in figure 4.4 as fl(0,1.1).

4.7 The ogive with which we are concerned is the normal ogive.

However, note the integral sign (f) on the right side of the de-

finition for the f 1(0,1).

The integral sign there means that no algebraic function can be

found to describe the normal give, This fact makes the normal ogive

very cumbersome to work with mathematically, and requires numerical

methods to solve, or a table of values,



4.8. On the other hand the logistic ogive has no integral sign on the

right side of its definition ( JP' L(0,1.7)). In fact, the expression

on the right in Figure 4.4 is the algebraic function describing the

logistic ogive. The logistic ogive is very easy to work with.*

4.9 For these reasons the logistic ogive is substituted as a con-

venient and very close approximation to the normal ogive.

4.10 This paper will only deal with the logistic ogive. Statements

about the logistic ogive may be taken as close approximations to the

normal ogive model. The logistic f.f. is no longer of interest to us.

*Some interesting logistic identities are given in Appendix A.
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CHAPTER 5

MareAbout Logistic Ogives

5.1. Figure 4.4 shows just one logistic ogive. There is actually an

infinite family of logistic (and normal) ogives, each different in

some way from every other one.

5.2 Logistic ogives are strictly monotonic functi,ns. They are

strictly monotonic Lecause, going from left to right, the ogive

always gets higher and higher, never is corpletely horizontal, and

never goes down.

5.3 Notice the ogive in Figure 4.4. Between -2.0 and--0.5 on the

horizontal axis the ogive is concave upward. Between 0.5 and 2.0 it

is concave downward. At some point between -0.5 and 0.5 this ogive

must change from being concave upward to concave downward. That

point is called the "inflection point." The inhection point is

always the point where the slope of the °nil/6 is at its maximum. The

inflection point for this ogive is located on the vertical axis at

.50, and om the horizontal axis at 0.0.

26
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-17(3-11
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Figure 5,5, Three logistic 'ogives (E,F, and G) with
b = -.5, 0.0, and 1.0 respectively.
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5.4 Three-parameter logistiC ogives (with which we are exclusively

concerned) may differ from each other in only 3 ways, one for each

parameter.

5.5 One way in which logistic ogives may differ is in the horizontal

location of the inflection point. Figure 5.5 shows 3 logistic ogiveS

labeled E, F, and G with their inflection points at different places on

the abscissa. You can see that the 3 ogives are exactly the same

except for a sideways shift of the entire curve. Shifting the inflec-

tion point sideways, shifts the entire ogive sideways. The horizontal

position of the inflection point is called the "b-parameter". Some

call it, as we will, the "b-value". The b-values of ogives E, F, and G

in .gure 5.5 are -.5,0.0 and 1.0, respectively.

5.6 To include the b-parameter in the logistic ogive function, it is

only' necessary to subtract the b-parameter from the horizontal axis

variable.

5.7 Figures 4.1, 4.4, and 5.5 were constructed with the horizontal

axis labeled z. This label was chosen to facilitate understanding of

the logistic f.f and d.f., because of the reader's likely familiarity

with the traditional z- scores of measurement. Since we are concerned

With the ability scale called 9, we now and hereafter label the hor-

izontal axis, G. Substituting 9 for z in the logistic function

and subtracting the b parameter, gives the height of the logistic
ogive by the function

+et7(e-b)
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Five
5.11. line logistic ogives (11,

J, and K) with

b = 0.8 and
c = 30,15, and .15 respectively.

which is soMetimes written

ii(e)..[I+expc-rfo.b)1

where exp means e raised to the
power of whatever is in the paren-

thesis after the exp.
The upper case Greek letter psi 1) is used

in the literature to mean the logistic ogive. Phi (I) is used to

mean the normal ogive.

'5.8 The logistic ogive has 2 asymptotes. The asymptotes are horizontal

lines that the ogive approaches at its
extremes, but never quite

reaches.. The upper asymptote is located
on the vertical axis at

1.00. In Figures 4.4 and 5.5 you can see that the upper, right part

of the logistic ogives approach the value of 1.00 on the vertical

axis.' In the figures it
may appear as though they touch the hori-

zontal line at 1.00, ht, strictly speaking,
they never quite do.

5,9 The lower asymptotes for the ogives in Figures 4,4 and 5.5 is

the horizontal axis with a height of zero. Just as the upper part of

the ogive never quite reaches 1.00, the lower part of the ogive never

quite reaches the lower asymptote.

5.10 All logistic ogives in Ill have an upper asymptote at 1.00, but

not all have a lower asymptote at .00.
In fact, few do.

5.11 Figure 5,11 shows 3 logistic ogives,
labeled 8, J, and K, which

7,------

are identical except for different lower asymptotes. The lower

asymptotes are at .16, .25, and .30 on the vertical axis. The

b -value for each ogive .'0.0.
Note that the upper asymptote for all

3 ogives is at 1.00,

5.12 Note also that the inflection
points (all located at 0.0 on the

9 scale) for the ogives in Figure 5,11 are at different heights. In

fact, they are half-way between their asymptotes. That is always the

case. The inflection point of the logistic ogive is always half-way

between its upper and lower asymptotes.



5.13 The lower asymptote is called the c-parameter or the c-value. It

is another of the 3 parameters of IRT.

5.14 The effect of the c-value is to squeeze the ogive into a smaller

vertical range. The reduced range is equal to 1 - c. The effect of

the reduced vertical range is to reduce the slope of the ogive at every

point on the 0 scale, other things being equal. We include the c-

parameter in the logistic function by multiplying by 1 - c, and adding

c.

(A)= co-c)[

which is the same as

T(G)Fci-(1-c) +exp(-1.7(9-b)]

T(e):2 c+

and

(1 -c)

[ 1+ e-I.7(G-q

The c-values of ogives H, J, and K in Figure 5.11 are .30, .25,

and .15, respectively.
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Figure 5,17. Three logistic ogives (L, M, and N) with
1/0b = 0,0, c = .00, and a = .8, and 2.0 respectively.
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5.15 The third (and last) parameter of IRT is (you guessed it) the

a-parameter, or a-value.

5.16 The a-parameter is related to the slope of either ogive at

the inflection point or in other words at the b-value. For the normal

ogive model (with c = 0.0)

0= mv--. 2.5m

where m is the slope of the ogive at the b-value.

5.17 Figure 5.17 shows 3 logistic ogives (L,M, &N), which are identical

except for their-a-values = .3, .8 and 2.0, respectively, with b = 0.9

and c = .00. As you can see, the larger the a-value, the steeper the

ogive. Specifically,

a= [ (0)-13]

where1119). the point on 0, where the height of the ogive = c .8455(1-c).

The -1 that looks like an exponent of '4 is not an exponent at all,

but indicates the inverse of the function. Typically, a function is

used by starting at some point on the abscissa, going vertically to the

function, and then horizontally to the ordinate. The inverse procedure

would be to start at a point on the ordinate (in this case at c-0-

.8455(1-c)), go horizontally to the function, and then drop down to the

abscissa (0). That point on A isW4(6'. The -1 outside the brackets

is an exponent, which means to take the reciprocal. The number .8455

is the proportion of area under'the logistic f.f. and to the left

of z-score = 1 (see Figure 4.1). The z-score = 1 is an arbitrary

mathematically convenient point.



5.18 The a-parameter enters the logistic function as part of the

exponent of e.

i/(9)-c+
1 -c

-I.7a (G-b)

.1 + e

This formula is the 3-parameter logistic ogive. It will look

rather ominous to the novice. However, it is not difficult with a

pocket calculator with an ex key and a 1/x key. It is highly instru-

ctive to go through the calculation of several points of a typical .

logistic ogive and to plot them. An opportunity to do so is provided

below for an ogive with a =.9, b = 7.4, and c = .2. The reader can

verify the results in Figure 5.18, which shows this logistic ogive with

its characteristic parts labeled.
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Pocket Calculator Instructions

a = .9

b = -.4 T(e) = c +

c = .2

(1-c)

1+e
-1.7a(e-b)

Enter MY Ccmment

-.4

(pick one)
minus

times
.9 a

times
-1.7 constant

=
x

e

-1.7a(9-b)

plus
1 constant

1/X reciprocal
times

.8 1-c

plus
.2 c

1.0

.75

1,(9)

.50

.25

41 (8)
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Upper Asymptote

c 4.8455 (I-c

We)
.5(1+c)_60.

.50

Lower Asymptote .25
C

inflection point
a -.90

c = .20

I li I 1 I 1

-3 -2 -1 T 0 ol) I 2

I
Figure 5.18. A three-parameter logistic ogive with a I I
=-- .9, b = -.4, and c = .2 with its characteristic parts

labeled.
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CHAPTER 6

The Item Response Function (IRF).

6.1 Let's consider 2 examinees (Al and Bob) with different ability

levels, i.e. different Os. Let's say Al has a higher 0 than Bob. That

means they are located at different places on the)) scale. See Figure

6.1.

M
Am op mom mm:

INIMEMOMMEMO
momMMMME

IIMMOMMEM MOM
imm mum memo MENM memo
MOC,P7IIIM M E

mislimmilmm u mmWM MEMO MMME MEM M OMMOO MOM MEMMIIIIMME MOMMEMOMMOM Immo mom imminmulummul mommlimmxim mmiummimmom moms immusulummsmimmommilsumnamusassmosumuummumams mom MOREMMUUMMOMMimmamminsmomminommilmmummumm mom ummmminryWEIIMEM KNEE E2IIMMMMOMMMMILan
Figure 6.1. The ability scale (9) with two hypothetical MEMOMMMUMMEMOMMOMMOMMOMMMOO

P. zurno.imissamossinummuln.
ndividuals (Al and Bob) located on it. mu; MEMOSOMMOI
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6.2 What are the chances that Al will get item #1 correct? What are-

the chances that Bob will get item #1 correct? So far we don't-know

the answer to either of those questions. But we do know one thing. Al

has a better chance of getting item #1 correct than Bob, because Al is

smarter than Bob (i ability 9). So let's represent the probability of

each getting the item correct by a point above each (points A & B) in

Figure 6,2.

MX II MO
IN N= III MEM MI OEM MN IMO II NM II NE RNE= MEM IMMIX IN

11111111111EXI II MI S MEM MN II MIME IIIII ME NMI Rffilla malll MN I II MIMI MO1111111111101 11M111111111111111 EMU: 111M111111MN .'l 1 UM MIM11MMOr I LIMO 111111111111.M11 ENEM= MEMNON NMIli MEM 11111111M01111111111111110=111111IIIIIIIIMMIIMMIIIIIIN1111111111 11111 111MEM IIIIMIIIIMMONIMIIIIIIIIII111011111111111111111111111M111111111111101111MUM111111111111MMIMMIIIIIMIS11111M1/4111111111101MMEMEMMINIMINIIIIIIIIIIMMIIIIIIIIMIIIMNIIIMMIIMMP
X OIN11111Z:1r1 I

INA 11111111111MIMEMEN11111EMI NNW
Figure 6.2. The probabilities of Al and Bob getting
Item 4 1 correct as afunction of their abilities.

6.3 In doing so we have defined an ordinate as the probability of

getting the.item correct as a function of 9 (ability). This may be

written P. (*), and read, "the Probability of getting item i correct

given (I) 9." But for brevity it is usually written Pi(9). The

subscript (iJ is often omitted.

sJ
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6.4 Now let's take Carl, who is dumber (less ability 9) than Bob.

Carl has an even smaller chance of getting the item correct. See

Figure 6.4a.

Figuie 6.4a. The probabilities of Al, Bob, and Carl
gettingItem 4* I correct.

And let's also add Dave, and Ed and Fred who have less 9 still. See

Figure 6.4b.
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Figure 6.4b. The probabihttes of Al, Bob, Carl, Dave
, and Fred getting Item 4* 1 correct.

And we can add Olga, who is very bright. See Figure 6.4c.MOM 10MOMMUMMIAMMMITROPOWWWWIPAWNWHIPMPUIMMIEMEM
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Figure 6.4c. The probabilities of Al, Bob, Carl, Dave,
Ed, Fred, and Olga getting Item 4* 1 correct.
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6.5 Since the probability of getting the item correct is only a

function of the amount of ability,* we can say that any, who has

the same A as Al will have the same probability as Al of getting

the item Correct (A). And, everyone who has the same A as Ed will

havethe same probability as Ed of getting the item correct (E),

and soon. Therefore, we can connect the poirits in Figure 6.4c,

which will tell us the P(A) for each A. This curve is called the Item

Response Function (IRF) and was until recently called the Item Char-

acteristic Curve (ICC). See Figure 6.5
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Figure 6.5. The Item Response Function of Item
# 1.

6.6 We know several things about this IRF.

(1) It cannot rise higher than 1.0, because a. probability = 1.0

is a sure thing, and nothing can be more probable than a sure thing.

(2) It will never reach a height of 1.0, because in testing there

is no such thing as a sure thing. Therefore, the curve has an upper

asymptote of 1.00.

(3) Between Ed and Bob the curve has to rise rapidly, because it

must rise from point E to point B in the short distance between Ed's

9 and Bob's A.

*assuming unidimensionality, which will be discussed in Section 14.4.
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(4) The curve must always rise (i.e. can never be horizontal or -

go down) as we move from left to right, because as ability increases,

so does the probability of getting the item correct. Therefore, the

curve is strictly monotonic.

(5) It cannot go below 0.00, because a probability = 0.00 is an

absolute impossibility, and nothing can be less probable than an

absolute-impossibility. Therefore, the curve has a lower asymptote.

(6) Since the item is a multiple-choice question: there is

usually a fair probability of getting the item correct strictly by

chance alone, no matter how low the A. Traditionally, we have taken

this probability to be 1/A, where A = the number of alternatives in the,

multiple-choice question. A 4-choice item has been thought to have a

chance probability of 1/4 = .25, and a 5-choice item, a chance pro-

bability of 1/5 = .20. Whatever the'chance probability of getting

a multiple-choice item correct is, it is not expected to be zero.

It is expected tebe somewhat greater than zero. Therefore, the curve

in Figure.6.5 is expected to have a lower asymptote above zero. (In

Section 7.3 we shall see that the lower asymptote is seldom 1/A)

,6.7 You have probably noticed that all of the things we observed about
ti

the IRF are also true about the 3-parameter normal ogive and logistic

ogive.

`Therefore, we conclude that the normal (or logistic) ogive may be

used to describe the IRF very well. And we may use the logistic ogive

function to describe the IRF mathematically.
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6.8 If somehow we knew and we were to plot the probabilities of

getting item #2 correct for Al, Bob, Carl, Dave, Ed, Fred, and Olga, we

might get an IRF like Figure 6.8.
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Figure 6.8. The Item Response Function of Item# 2.



6.9 Figure 6.9 shows both item #1 and item #2

PIED ID DAVE CARL 100 e AL
Figure 6.9. The IRFs of Items # 1 and # 2.

For Olga, Ed and Fred (and anyone else with their As) the probability

(P2(9)) of getting item 2 correct is about the same as their PI(A) for

item #1.

/\14.00
OLGA

But item #2 is harder for Al, Bob, Carl, and Dave than item #1,

because for all of them the probability of getting item #2 correct

(gt(G)) is lower than the probability getting item #1 correct. And

it would be' harder for anyone who has t e same ability as Al, Bob,

Carl, or Dave.

6.10 We also notice that the probabilities of getting item #2 correct

for Bob, Carl, Dave, Ed and Fred are all about the same. Item #2,

then, does not do a good job in distinguishing among people with

abilities like Bob's or below. This observation is consistent with

what we intuitively understand about items,. A hard item does not

discriminate among low ability people, because they all 'get it wrong

(unless they make a lucky guess). An easy item does not distinguish

among high ability people, because they all get it correct. A test

composed of items with IRFs like item #2's IRF would not be a good test

for measuring the relative ability of people like Bob, Carl, Dave, Ed

and Fred.

Note: In practice, any particular examinee may either know the answer

to a particular item (in which case his probability of getting it

correct is 1.00), or not know it (in which case his probability of

getting it correct is chance).' Strictly speaking, we can not talk about

the probability, of a particular person getting correct a particular
0

_item. However, for pedagogical reasons we will violate this restriction

in this section.(See Section 8.2 f4r 'clarification.)
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6.11 However, Olga's g9) for item #2 is much higher than Al's

3(9). Therefore, item #2 will distinguish between people like Al and

Olga. If a distibction in that range of ability is our purpose, then

a test made of items like #2 would be a pretty good test.

6.12 Item #3 might have an IRF like that in Figure 6.12. This item

rises over a logger range than does either item #1 or item #2, but its

. slope is less at every point during its rise. This low slope means

that item #3 is discriminating over a wide range of 9, but is not

doing so well at any particular 0.

Figure 6.12. The IRF of Item i* 3.

6.13 Figure 6.13 shows the IRFs for both item #1 and item #3.
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ITEM I 63
FRED ED DAVE CARL NOS AL

Figure 6.13. The IRF of Items # 1 and 3.
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It is, interesting to note that item #3 is harder than item #1 for

Al and Bob, but easier for Dave, Ed, and Fred. This possibility of

reversed relative item difficulty for persons of different ability is

one of the surprising results of IRT.

6.14, We have seen that the greater the slope of the IRF, the greater

the discrimination, but the smaller the range of discrimination. We

have already noted in Chapter 5 that the a-parameter of the logistic

ogive describes its slope. Therefore, the a-value is called the

discrimination index of the IRF. The greater the a-value of the IRF,

the better the item discriminates.

6.15 Also apparent is the fact that the shift of the IRF as a whole

to, the left makes the item easier in general, and to the right makes

the item harder in general. The left-right shift of the logistic ogive

is described by the b-parameter. Thus, the b-value is the difficulty

index of the IRF. The more difficult the item is, the larger (in the

positive direction) the b-value of the IRF.

6.16 The IRFs of items 1, 2, and 3 have different lower asymptotes.

'Since the IRF never goes below the lower asymptote, this difference in.

IRFs means that the items are of different difficulty even for exam-

inees of very low ability. But examinees of very low ability will

know almost nothing about the item, and therefore have to guess. The

difference in lower asymptotes of IRF's means that very low, ability

examinees have a better chance of guessing the correct choice of some

items thatof others. This result of IRT will be discussed further in

Section 7.3. The lower asymptote of the logistic ogive is the c-

parameter. The c-value of an IRF is called the "guessing index" or

more properly the "pseudo-guessing index" of the item. Both terms are

used.
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6.17 Figure 6. shows the IRF's for 4 actual items from the Coast

Guard Knowledge section of the U.S. Coast Guard Warrant Officer test.

-Item #17 is a very difficult, but highly discriminating item. It has a

c-value of .00, which means that nearly all examinees below G = 1,

answered the item incorrectly. Item #17 is a very unusual item in two

respects, its extremely high a-value, and .00 c-value. It is, however,

an ideal item for many purposes.

Item #21 is an easy item with somewhat low discrimination. Item

#47 is slightly easier than #21, but has good discrimination. Item #50

is an item with medium difficulty, and poor discrimination.

6.18 The IRF should not be confused with the item-test curve. The

item-test curve has raw score as the horizontal axis instead of G.

The item-test curve, therefore, suffers from the same problems of

distorted scale as the raw score. The item-test curve has no par-

ticular shape, and is not independent of the other items in the test.

In fact, the average of the item-test curves of all items in a test is

always a straight line of slope = 1(i.e. 45°). Thus, for many purposes

the item-test curve is useless as an analytic tool.
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CHAPTER 7

The a, b, & c parameters

7.1 The a-value is the discrimination index of the item. If 0 is
normally distributed, in the normal ogive model the a-value is related,

to the d-value in the following very complex way (from Schmidt, 1977).

dAirxr
a trz

(KR -20)(I -c)2y2-d2pq

where d = d-value, the point biserial item-test correlation

p = p-value, the proportion of examinees correctly answering the item

q = 1-p

KR-20 =. Kuder-Richardson formula 20 reliability

y = the height of the N(0,1) curve at the z score that cuts off

P' proportion of the area under the N (0,1) frequency function.

c = c-value

p'
1-c
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The a-value is related to the slope of the IRF, and can range from

0.0 to + oo just as the slope can. Negative slopes are possible, but

not of interest to us. Experience has shown that a-values of typical

items vary from about .5 to 2.5 with most from 1.0 to 2.0. The highest

I have observed is'3.76. An item with a low a-value discriminates

poorly over a wide range of 0. With a high a -value the item discri-

minates well, but over a small range of 0. Items with a-values below

.80 are not very good items for most purposes.

7.2 The b-value is the difficulty index. If 0 is normally distributed,

it is related to the p-value in the normal ogive model (Trom Schmidt,

1977) in the following way:

yz (I -c) KR-20

d-NFrq

where.z 1. the z-score that cuts off p' proportion in the upper portion

of the area under the N(0,1) frequency function, and the other symbols

are as defined in Section 7.1 above. Typical b-values range from -2.5

to +2.5. A b-value of -2.5 indicates the item is very easy. An item

with a +2.5 b-value is very difficult, and items with 0.0 b-values are-

of medium difficulty.
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7.3 The c-value,is the guessing parameter or pseudo-guessing para-

meter. It indicates the probability of examinees with very low

ability of getting the item correct. Most c-values range from .00 to

.40. Items with c-values of .30 or, greater are not very good items.

It is desirabl to have the c-value at .20 or less. The lower the

c-value is, th , tter. A zero c-value is ideal. Typically, the

c-value is about 1/A - .05, where A = the # of alternatives. Thus,

4-choice items often have c 21:.20 (i.e. .25-.05), and 5-choice items

often have cs=4,15. (i.e. .20-.05).

Items do not have a c-value of 1/A because examinees do not, in

fact, guess randomly when they do not know the answer (as has often

been assumed in classical test theory analyses).

7.4 Two explanations have been offered for the fact of non-random

guessing (901/A).

Lord ha§-suggested that item writers are very clever in writing

distractors that are very attrcpive to low ability examinees. Thus,

when low G examinees do not know the answer they are attracted more to

distractors than to the correct answer, and so get the item wrong more

often than if they guessed randomly.

The other explanation is my own, based upon personal knowledge of

item writing and test taking behavior:

(1) When an item writer sits dowr to write items, he, for the

moment, is,not concerned with the distribution of the correct answers

(the keyed choices) among the four (for four-choice items) possible

positions choice A, choice B, choice C, and choice D).
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(2) He has a tendency to try to hide the correct choice. In a

four-choice item there are only places to hide it - choice B, or

`choice C. Therefore, he writes many more items,'keyed B or C than A

or D, and in fact there seems to be a much stronger tftemby tuWerd C.

(I have verified this tendency with many item writers). This also

seems to be true for 5-choice items.

(3) When he finishes writing the items, he tabulates the numbers

of items keyed for each position, and usually firlds that he has many

mare C's than A's, B's, or D's (or E's in 5-choice items).

(4) Most testing organizations have a requirement that there-

should be about equal numbers of items with the keyed choici in each

of the 4 or 5 possible positrons.

(5) The item writer then. begins to revise the order of the

choices in items to decrease the number of items keyed C, and increase

the number of items keyed A and D and maybe B. He continues to revise

the'order of the choices of items until he has satisfied the require-

ment of abut equal numbers of keyed choices in each position.

(6) Naturally, to save himself work and time (the Law of Least

Effort) he wants to revise as few items as possible. Therefore, he

stops revising items when he gets within the requirement of about

equa' lumbers. Because he started with more items keyed C, he also

ends up with more items keyed C (but not as many), because he only

needs about equal numbers.

If the above scenario is as universal as I believe, it means

that, in the set of all multiple-choice items in the world, more are

keyed C than any other choice. It is true of almost all of the tests I

have checked.
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There is a widespread rule of thumb'among examinees: "If you

don't know at all, guess C." I haVe heard this rule of thumb from

coast to coast, from high school and college students, and from

civilian employees and military personnel taking promotional tests.

I db not know the source of this rule of thumb, but it is possible

that the rule of thumb gradually'§rew from examinees' observations

of e frequency of keyed choice positions, as I have suggested

4bove.

Whatever the origin of the rule of thumb, it represents rational

behavior, given a higher frequency of choices, keyed C, among the

population of A)1 multiple-choice items. By choosing choice C (when

you don't know at all), you will get more items correct by chance in

the long run than by guessing at random.

This analysis suggests that the c-values of items keyed C will

be higher than for items keyed A, B, and D. I was able to test this

hypothesis with 127 items from 6 forms of the verbal parts of the

SCAT-II series of tests, published by the Educational Testing Ser-

vices, Princeton, NJ. The c-values were provided by Fred Lord.

A two-by-two frequency table of A, B, D vs C by above-average c-value

vs below-average c -value yielded a Chi square significant beyond the

.001 level. This result strongly supports the hypothesis that low

ability examinees get items keyed C correct more often than they get

items keyed A, B, or D correct.

The results suggest-2 alternative courses of action for testing'

organizations.

(1) Require that there be exactly the same number of keys

in each position. This action would thwart the test-wiseness

of those who use the rule of thumb. However, it represents an

undesirable rigidity.
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(2) A better course of action would be to key C for less than

1/4 of the items(for 4-choice items). This action would cause

a lower average c -value for the test. The lower average c-value

would increase the total information in the test, which as we

will see in Spec. 9.4 is highly desirable.

7.5 The Rasch model assumes that all items in a test have the same

a-value, and that c = .00 for all items. Both assumptions are nearly

always unrealistic.
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CHAPTER 8

The Test Characteristic Curve

8.1 The scale of A is Continuous, but since most of the calculations

are done on digital computers, A is usually broken into small, dis-

crete intervals of .05 0 units, and values of P(9) are calculated for

each .05 interval from A = -5.0 to A = +5.0. sThe very broad range

From -5.0 to 5.0, and the small .05 intervals are used in the interest

of accuracy. Larger or smaller intery s and a broader or narrower

range may be used'depending on the rpose and degree of accuracy

desired.

8.2 Table 8.2 blow give the P(A) for 17 values of A for each of the

4 items, shown in 'Pi-gu-re`,6.17.
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I s ..f
tsr, , e .

-

#17 #21

F(9

#50 ZP(0)#47

-2.7 .00 .30 .38 .20 .88

-2.3 .00' .33 .40 .23 .96

-2.0 .00 .37 .45 .25 1.07

-1.7 .00 .43 .52 .28 1.23

-1.3 .00 .53 .66 .33 1.52

-1.0 .00 .71 .87 .44 2.02

-.7 00 .62 077 '.48 1.77

-.3 .00 .82 .94 .52 2.28

0 .00 .88 .97 .59 2.44

.3 .00 .92 .99 .65 2.56

.7 .00 .96 .99 .74 2.69

1.0 .01 .97 .99 .79 2.75

1.3 .04 .98 .99 .84 2.85

1.7 .35 .99 .99 .89 3.22

.78 .99 .99 .91 3:67

2.3 .96 .99 .99 .94 3.88

2.7 .99 .99 .99 .96 3.93

Table 8.2.

An item is scored dichotomously, which means the examinee either

gets the item correct (for which he b'et's an observed score of 1) or

he gets the item wrong (for which he gets an observed score of 0).

The dichotomous score is a result of the typical use of multiple-

choice items. An examinee's dichotomous score (0 or 1) is not a

very accurate measure of his knowledge.
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P(9) may be interpreted in two ways. A P(A) .78 means both:

(1) 78% of the examinees with the given 9 will get the

item correct, and

(2) An examinee will get correct 78% of the items

which his P(9) s-7ffr----

If an examinee answers 100 questions for all of which his P(9)

= .78, he is expected to get 78 items correct and 22 items wrong for a

% score of 78%. If there were some way to give hiM partial credit of

.78 points for each of the 100 items instead of 0 or 1 point he would

also get a % score of 78%. This notion of partial credit for an item,

depending on his P(9), leads to the idea of a true score on the item.

It is often not true that the examinee is 100% or 0% certain of

his answer. Yet on a multiple-choice item he either gets full (100%)

credit for the item (1, if he gets it correct) or no (0%) credit

(0, if he gets it wrong). The examinee's degree of certainty, if

measurable could be taken as a more precise measure of his knowledge.

P(9) might be interpreted as this measure of his' knowledge, and is

called his true score on the item. The sum of his true item scores

is his true test score. His true test score is the raw score he

would get, if there were no measurement error in the test.

The far right codumn in Table 3.2 is the sum of the P(9)'s of the

4 items for each of the listed points, on the 9 scale. The:EP(9) is

the true test score of an examinee with a given 9 on a test composed

of the 4 items.
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Figure 8.3. The Test Characteristic Curve of a testcomposed of four real items.
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8.3 If we plot the true test scores against 9, we get a 451
characteristic curve (TCC). Figure 8.3 shows the TCC. The TCC'

gives the true score for each point on the A scale. Notice that

the TCC is neither a straight line nor an ogive. Each test will

have its own TCC, which is the sum of the IRF's of the items in

the test.

8.4 One of-the interesting uses of the TCC is to determine.the

distribution of the true scores on the test. Figure 8.4 shows how

this is done. If the examinees' As are normally distributed, as

shown on A (upside down), the examinees' true score- will be as shown

on the left. The true score distribution is found by projecting the

intervals from the A scale onto the TCC, and then representing the

same area on the true score scale within the projected intervals.

Figure 8.4 is an excellent demonstration of how the peculiarities of

a test produce 4 distorted metric.

8.5 It is important to note that true scores (T) are not observed

scores (X). Observed score.is defined as true score plus error

(X = T + E). However, Lord (1969.) has found that the distribution

of X will be similar to the distribution of T, but sometimes with

the high points of the true score distribution flattened somewhat,

and the low points higher. The flattening is due to error.

co'
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CHAPTER 9

The Item Information Function (IIF)

9.1 We can see in Figure 6.17a that item #17 will not help us to

distinguish among examinees whose 9's are less than 1.0 because

they will all get the item wrong. Apparantly, there is something

about item #17 that leads all examinees with A < 1.0 to choose

the wrong alternative. This is an unusual situation, but

actually occurs with this question. A test made exclusively of items

like #17 would do nothing to distinguish among examinees with 94

1.0 because they would all get zero on the test. It would give us no

distinguishing information about them.

Item #17 also gives us no distinguishing information about

examinees with 0 = 2.7 or greater because they will all get it

correct. On a test comosed-iFi-tems like #17, all examinees with

9> 2.7 would get 100%.

Between 0=1.0 and 0=2.7, it is a different story. From 0=1.0

to 9=1.5, P(9) goes from P(9=1.0)=.00 to.P (9=1.5)=.08. The change

of P(9) means that the item does help to distinguish among examinees

within the range of 9 where the change of P(9) occurs. In this case

the difference between the P(9)'s (to be denoted dp) = .08 (.08-.00)

is small. The change (dp) .occurs over 'a range ('9) of 1/2 9 units

(1.5-1.0). The ratio of dp to d9 (dp/d9) is equal to the average

'slope of the IRF over, the range of d9. For the range from 9=1.0 to

0=1.5, dp /d9 = .08/.5 = .16.



From 2.0 for item #17, P(9) changes from .08 to

.78, a ver large change. dp = .70 z(.78 -.08) in this range, and

dp /d9 = .70 .r = 1.40, which is very large. Item #17 is an excellent

item for distin ishing among examinees in the range 9 = 1.5 to

2.0. A test composed of items like #17 would give scores from about

8% to 78% for examinees whose 9's go from 1.5 to 2.0. This test

would give *.:5. a lot of distinguishing information about'examinees in

this range of 9, because it would spread them out over a wide range

of testStores.

We can see that the greater the slope of the IRF, the more in-

formation the item gives us about examinees in the range being

considered.

9.2 If we could make the range of 9 over which we find the slope

smaller and smaller, we would eventuall; get to the slope of the,IRF

at a point which would be the slope of the tangent line to the IRF at

a particular point of O.

The slope of the IRE would be a measure of the relative amount

of information the item gives about examinees at that point. The

greater the slope, the more information.
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Fortunately, there is an easy way to find the slope of the

logistic ogive. The slope of the IRF is given by:

1.709-b)
dP I.7a(I -c)e

11=
de [1+ el-M(9-112

where a, b, and c are the item parameters and A is the point

where dp /dQis the slope. The slope is also sometimes denoted as

P'(0), or P' for short. In calculus P1(9) is known as the first

derivative of P(9). Since the slope (P') is a measure of information,

it is possible to plot a curve that shows the amount of information

an item gives at each point on the A scale.

9.3 However, there is a catch. For mathematical and statistical

reasons which we will not go into, P1(9) is not a completely

appropriate measure of information°, but a related function is.

The function is:

I(e,u)

P(9)Q(9)
[c + e

1.7a (9-1[1+
e
1.70(9-1

2
(1.7a)

2
(1-c)

2

where P° is P' squared, and Q(9) = 1 - P(9). Note that the

exponent of the left e in the denominator is positive, and the

' exponent of the right e is negative.
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That function is called the Item Information Function (IIF), and

is written I(0,u). The'above formula for I(0,u) may look even more

ominous than the formula for P(0), but in fact it is only slightly

more complicated. It is still feasible to calculate points of

I(0,u) with a typical scientific hand ceculator.

9.4 Figure 9.4a shows the I(0,u) for the four items whose IRF's are

shown in Figure 6.17. (Note that the vertical scale for-item #17 is

different from the others.) In comp ring. the IRFs with the IIFs,

you will note three important relati nships.

(1) The IIF is highest close where the slope of,the IRF is

steepest.

(2) The total area under the LIF increases as the a-value

increases.

(3) The total area under the IIF decreases as the c-value

increases.

The fact that total information (i.e. total area under the HO'

increases as the a-value increases, demonstrates the importance of

high ar,values for items. However, there is another effect of high

a-values. As the a-value increases, the width of the 0 scale over

which the information is distributed decreases. The effect is called

the bandwidth paradox*. Thus, sometimes a Compromise must be made

between the total information provided by the item and the distri-

bution of information over O.

*ThiS bandwidth paradox is different from the bandwidth paradox

described by Cronbach (1960, p.602).

(
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A

The total information (Ag) nf item g is giVen by

1.7a (c log c+ (1-c))

I -c

1.70 +
1.7aclog c=1:70(+c_1212)

1 - c 1 -c

where a and c are the item parameters and log c is the natural log-

arithm of c. From inspection of the formula for Ag, you can see that

as the a-value increases, so does A Also apparent is the fact that,

as c approaches zero, A
g

approaches 1.7a. Therefore, the maximum

total information an item can prov"tde is 1.7a. Not so obvious from

the formula for Ag is the relation that, as c approaches 1.00, Ag

'approaches zero. This occurs because log c is negative except when c

= 1, and because when c = 1, c log c/(1-c) = -1. This relation

explains the effect of the c-value: the c-value destroys information.

Figure 9.4b shows how total information decreases as c increases while

holding the a-value constant,

Since the b-value is not included in formula for thethe b-value

does not affect the total information.

9.5- The point on 9 where the IIF is highest is not at the b-value,

as one might expect (except-when c=0). The point on 9 where informa-

tion is greatest is given by

b4. [ 4-.5 I -8c1/7-1(Maximo 1. 70
log (.5

where "log" means the natural logarithm.
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7

The point on 0 where information is maximized is always to the

richt of they b-value, (except when cam', it is at the

never farth r.to.the richt than .41/a.

iue), but

9.6 The IIF is symmetrical when c=0 and skewed to the right when

050. The larger is c, the greater the right-skew. The right -skew

occurs because the c-value destroys more information at low leNiels

of 0 than at high levels. This result makes sense because examinees

at low bs will guess more than examinees at high Os. Guessing (i.e.

the opportunity to get the item correct by guessing) dest' ois infor-

nation. It is for this reason that five-choice items are preferred to

four-choice items.
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Warrant Officer Test.

'71
72



CHAPTER 10

The Test Information Curve and Relative Efficiency Curve.

10.1 The Test Information Curve (TIC) is nothing more than the sum of

the Hrs.. IIFs are summed by "stacking them on top of each other."

"Stacking" IIFs merely means that the heights (i.e. the amount of

i formation) of the IIFs at a particular value of 9 are added together

to et the,height of the TIC at that value of 9. Plotting the sum of

item information at each value of 9 gives the TIC. The height of the

TIC at 9 is written as I(9).

Ve)=.21-(6?a)

10.2 Figure 10.2a shows the sum of the.4IFs for items #17 and 21 as

shown. in Figure 9.4a. Figure 10.2b shows the IIF of item #47 added to,

Figure 10.2a. Figure 10.2c shows the IIF of item #50 added to the

other 3 items. A test composed of these four items would have the

wierd TIC in Figure 10.2c.

10.3 The TIC shows the relative amounts of information provided by

the test at each point on 9. Where you want information depends on

what you will use the test for. If you want to select a few examinees

from a large number, then you want a lot of information at high 'levels

of 9, so that you can tell just which examinees are the best. For

example, see Figure 10.3a. If you want to select all examinees except

a few, then you want a lot of information at low 9s so you can tell

which examinees are the worst (e.g. see Figure 10.3b).
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Fi 10.3a. Test Information Curve of a hypo-
theti al test, which would be efficient for a high
cut core (e.se 2.0).

3

-3 -2 2

Figure 10.3b. Test Information Curve of a hypo-
thetical test, which would be efficient for a low
cut score (8 Mr -2.3).
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1(9)

-3 -2
9 I 2

Figures 10.3c The Test Information Curve of a hypo-
thetical test, which would be efficient at both high
and low cut-scores.

Figure 10.4. The Relative Efficiency Curve compar-
ing Test Information Curve in Figure 10.3c to that in
Figure 10.3b.
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Sometimes a test is desigRed for more,than one purpose, such as

to be used with two cut scores, for entrance into two different

schools. In this case a two-humped TIC will give,good information at

the two cut scores. (e.g. see Figure.10.3c).

A TIC of any desired shape may be constructed, provided the

items with the necessary IIFs are available to construct the TIC.

10.4 Usually we already have a test and want to revise it to make it

better serve our purpose. A comparision of the new and old versions

should be made Using the.Relathe EfficiencyCUrve(REC). The REC is

nothing.more thall the ratio of the TICs. The ratio of the two.curves .

is found by dilO'ding the I(0) of one test by the I(9)-of the. other

test at each poiiit on G. Figure 10.4 is the REC, comparing the TIC

in Figure 10.3clo the TIC in Figure 10:3b.

Where the REC is above 1.0, the est in Figure 10.3c(the test

for which the I(0) is the numerator of he REC ratio) is better than

the test for Figure 10.3b. Where the REC below 1.67-5-e- test for

Figure 10.3b is :better. And where the REC - 1.0, the two tests are

the same.

By starting with an old test, making substitutions of items, and

calculating the REC, you can experiment with and improve the old test

by trial and error. It does not take long to develop some skill in

replacing items to improve the TIC as desired.

10.5 Every test has some error in it. The Standard Error of EStimate

(S.E.E.) is the expected standard deviation of errors of estimated

ability. That is, if we were to give a test to a group of examinees

with identical Os, and estimate their 'Os with the test, the standard

deviation of those estimates would be the S.E.E.



10.6 If the estimate of A is a maximum likelihood estimate (see Chapter 12),
the S.E.E. at a particular A is easy to calculate from the TIC. The'S.E.E.

is equal to the square root of the reciprocal of the height of the TIC (I W) :

..A(1719-

Since I(9) varies along the A scale, so will the S.E.E. The
larger I(0) is, the smaller the S.E.E. A small S.E.E. at a cut point,

highly desirable.

10.7 The average S.E.E. (S.E.E.) over examinees is related to the
reliability of Classical Test Theory (rxx), when the scores are
standardized to a standard deviation 1.0."

X = -SEE 2

This relation implies that a test with high reliability may be a
poor test for your purposes because it has low information at the
critical values of A. Similarly, a test with low reliability may be an
excellent test for some purposes; if it has high information where it
is needed. Thus, reliability is highly misleading as to the value of a
test.

The relation also makes clear the dependence of reliability on the
distribution of ability. If many examinees are on the A scale where
there is high information; then the reliability will be higher than if
they are distributed on A at points where information is low.

f Fig
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CHAPTER,11

The Score Information Curve

11.1 The test.fiformation curve (I(A)) gives the maximum amount of

information about A that can be extracted from the test. However, to

get the maximum information, items must be optimally weighed. The

optimal weight (W(A)) of an'item is given by

Pi 1.7cel.7d (9-b)

144(9) Pi GN i.7a (9 -b)
c+ e

A
'There is a curious characteristic of W(0). It varies with

That means that item A should receive different weights for examinees

wit different Os. But.,,,to get W(A), you must know 0, which is what

you re trying to get by giving the test.

11. There are two ways to approach this dilemma.

The most satisfactory way is to use an iterative computer

program, such as LOGIST or OGIVIA (see Chap.'15). These computer

programs, in effect, make use of the optimal item weighs and

hence yield maximum information about O.

(2) A rough approximation would be to take raw scores on the

test, divide the distribution of raw scores into, say, top,

middle and bottom groups and then xescore using different

item weights for'each group. This procedure would not yield

maximum information, but would provide more information than

not using variable item.weights at all.
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11.3 If neither of the options in Section 11.2 is possible, then you

may have to resort to the use of number-right score. In this case

the amount of information provided by this scoring procedure becomes

of interest. The amount of information provided by a number-right

score is called the number-right Score Information Curve (SIC). The

formula for the SIC (also written as I(G,X)) is

A 1,2

Pi Qi

11.4 The SIC usually has the same generd shape as the TIC, but is

lower than the TIC at all values of G. At high A the TIC and SIC will

be nearly the same height (i.e. SIC/TIC.=:1.0). As A becomes smaller

and smaller, SIC/TIC becomes smaller. This result means that, at high

Gs little information is lost by using a number-right score, but at low

Os relatively much information is lost. Such is the penalty for us of

the inefficient number-right score,

11.5 The ICs of two tests may be used just as the TICs are used. A rough

approximation orthe standard error of estimate may be found for each A using

the number - right scoring procedure, and the ratio of the SICs of two number-
.

right scored tests may be interpreted in the same manner as the .Relative

Efficiency Curve for TICs. (Strictly speaking, for this interpretation

to be legitimate, the test score must be shown to be an unbiased

estimate of G.)

11.6 The'SIC is plotted by a computer program available. from the Educational

Testing Service (See Chapter 15), and may be derived from a program by John

Gugel (see Section 15.4).
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CHAPTER 12

Maximum Likelihood Estimation of

12.1 There are two main ways in IRT to estimate an examinee's O.

They are called the Maximum Likelihood Estimation method and the

Bayesian Modal Estimation method. Both methods use the actual re-

sponse pattern of the examinee rather than the raw score. The differ-

ence between the two methods is merely'an additional assumption made by the

Bayesian method.

12.2 A response is Indicated by the lower case letter u. If the examinee

gets item i correct, then ui=1, and if he gets it wrong, then ui=0. A

response pattern is also called a response vector, and is represented by

the uppercase letter U. A response pattern is a list of zeroes and ones,

indicating which questions the examinee got correct or wrong in the order

the items appea'r in the test. For example; in a four-item test, an exam-

inee who got the first two items correct and the last two wrong would have

a response pattern U = 1100. If he got the first and third items correct

and the other two items wrong, his response pattern would be U = 1010. If

he got the first three wrong and the last item correct, he would have a

response pattern U = 0001.

12.3 We recall that P1(9) is the-probability that an examinee with

ability U will get item i correct. Qi(0) is the probability that an

examinee with ability A kill get item i wrong. Qi(0)=1-Pi(0). We will

abbreviate Pi(G) and Qi(9) by Pi and Qi.



12.4 Probability theory tells us that the probability of independent

events occurring topether is equal to the product of their separate

probabilities. We know that the probability of netting one item

correct or wrong is independent of the probability of getting other

iters correct or wrong for any given value of G. We know this because

of the assumption of local independence.*

.\..-"---2

12.5 Therefore, the probability of an examinee getting item 1 correct

a d item 2 wrong is P1Q2. The probability of getting both items wrong

s Q1Q2. Getting item 1 correct and item 2 wrong is the response

pattern U=10. Therefore, P(U=10)=P1Q2, P(U=00)=Q1Q2, P(U=01)=Q1P2,

and P(U=11), =P1p2.

Similarly, for three items for a given 0, if:

P1= .3 Q1= .7

P
2

= .6 Q2 = .4

P
3

= 8 Q3 = .2

*The assumption of local independence will be discussed in Sec. 14.3.
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then

U L(Uj9) = Likelihood 74Fr

000 Q. = .7 x .4 x .2 = '.056

001 Q Q2P3 = .7 x .4 x .8 = .224

0.10 Q1p2Q3 = .7 x .6 x..2 = .084

100 PIQ2Q3 = .3 x .4 x .2 = .024

011 Q/P2P3 = .7 x .6 x .8 = .336

101. PIQ2p3 = .3 x .4 x .8 = .096

110 P,

'

P2 Q = .3 x .6 x .2 = .036

111 P
/
P P

3
= .3 x .6 x .8 = .144

Table 12.5

The likelihood of each possible response pattern for a
given 0 where the P,(0) is as given in Section 12.5.

12.6 These probabilities are called likelihoods (and written L(48)).

Each likelihood is the conditional probability of a response

pattern (U) given 9, i.e. L(Ui9). The general formula for a like-

lihood is

L(*) n

1=1



The upper case Greek letter Temeans the product of al the
,nur, /-44

121
where i goes from 1 to n (n = the # of items in the test) just as

einstatistical notation Z.
=1
m ans the SUM of a series of .umbers

1

where i goes from 1 tc n.

When u. = 1
u= p/ ploy=1,

When
111

= 0

Q u= °Qii Prai / Q z Qi

When ui = 1, the Qi drops out, and when ui = 0, the,Pi .drops out.

Thus,94Qi-"is just a convenient mathematical way of getting rid of

the P or Q depending on the value of ui. For a three-item test the

likelihood of 11 = 011,

L(UE0111(3)./r3 p;u0Q;ku

pliQl..11 p(:)ctO el .pi
I 2 2

p3 Q3
I 1 2 2 3 3



#1 #2 , '#3

(
r9PQPQPQ

1 II -2.-2.1 A_1'
1

Table 12.7

L(u=o)p191,____ . L(9121

.71 x .36 x ;19 = .202 \ .169

.68 x .39 x. .78 = .207 .173

.63 x .45 x .75 = .213 .173

.50 x .60 x .70 .210 .176

.38 x .77 x .62 = .181 .151

.23 x .90 x .50 = .104 .087

.12 x .97 x .41 = .048 .040

.07 x .99 x .30 = .021 .018

.03 x .99 x .21 = .006 .001

.02 x .99 x .13 = .003 .000

.01 x .99 x .09 = .000 .000

.01 x .99 x .05 = .000 .000

ZL(09) 1.195 1.000

(9121

.71 x .36 x ;19 = .202 \ .169

.68 x .39 x. .78 = .207 .173

.63 x .45 x .75 = .213 .173

.50 x .60 x .70 .210 .176

.38 x .77 x .62 = .181 .151

.23 x .90 x .50 = .104 .087

.12 x .97 x .41 = .048 .040

.07 x .99 x .30 = .021 .018

.03 x .99 x .21 = .006 .001

.02 x .99 x .13 = .003 .000

.01 x .99 x .09 = .000 .000

.01 x .99 x .05 = .000 .000

ZL(09) 1.195 1.000

The method of calculating the Maximum Likelihood
Estimate of 0 from a test of 3 items for an examinee
with the response pattern, U = 010.
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12,7 When we give a test, we get each examinee's response pattern,

and we want his 0. L(U(0) is not what we since we already have
U. What would help us estimate an examinee's 9 is just the reverse,

i.e. L(01U).

Fortunately, Bayes' Theorem allows us to get-L(01U) from L(U19).

LcelL(ile)o.
EL(ule)

To use Bayes' Theorem we have to get the L(U(9) at several points Jn

the 0 scale. How many points we use is determined by how accurately

we want to estimate 9.

To show how this is done, L(U=01010) is calculated in Table 12.7

for three hypothetical items at 12 values of O.

The total of the L(ules iszL(upe) . The right column shows

uel*L(ule) f EL(ule). Any examinee, no matter what his 9, could

conceivably have a U = 010 in this three-item test. There is a finite

probability of U = 010 at every O.

However, the likelihood of an examinee having U = 010 varies

considerably with 9. An examinee with 9.2..0.0 is unlikely, to have

U = 010. In fact, only 6% of examinees with ez.o.o will have U = 010.

Note: The proponents of Maximum Likelihood Estimation do' not agree with

the use of Bayes' Theorem in this explanation.



12.7

A graph of the likelihoods (for U = 010) would look like Figure

Figure 12.7. The graph-of the likelihoods in Table
12.7, called the likelihood function.

This curve is called the likelihood function.

If you had to guess the A of an examinee with U = 010, what A

would you guess from the information in Table 12.7? You should guess

his A = -2.0 because the likelihood of U = 010 is greater at A = -2.0

than at any other A. Therefore, you would be right more often than if

you guessed any other A. By choosing the A with the greatest likeli-

hood, you have chosen the 8 with the Maximum likelihood. And that is

the Maximum Likeli)ood method of estimating A! That's all there is to

it.
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Now look at the L(U10) column. At which value of 9 is L(U10)

greatest? It is at U = -2.0, the same as the 9 with the maximum L(0I

U). That will always be the case because the L(0/11)is are just the

L(U10)'s divided by the constant EL(Ule). So the '0 with the. maximum

L(011.1) will always be the same as the 9 with the maximum L(00).

_Therefore, it is not necessary to divide by EL(00) in order to find

the 9 with the maximum likelihood.

Singe we divided by 1EL(U10) in order to apply Bayes' Theorem,

we find that Bayes' Theorem is not necessary for Laximum likelihood

estimation.

Another short cut is to take the logarithm of the P. Qi's

and add them, instead of multiplying the Pi's and Qi's. The sum of the

logarithms will also always be maximum at the same value of C. A graph

of the log likelihoods is called the log likelihood function. The log

likelihood function will always be highest at the same 9 at which the

likelihood function is highest.

It should be noted that, in this example, you,would be right

in estimating 9 = -2.0 only 17.8% of the time and wrong 82.2% of the

time. But this is true only because the test had only three items.

With a longer test there would be one 0 at which the likelihood is

much greater than any other.

12.8 Table 12.8 shows the maximum likelihood method of estimat

9 for a test made of the four items whose IRF's ere shown in Fqure

6.17.

(1) across the top are 17 values of

(2) under the 9's are the P(9)'s for each of the four items.

(3) the item numbers and parameters are in the top left corner.

(4) down the left side are the 16 possible response patterns for

four items and the raw (# right) score represented by the response

patterns.



b

3.76

1.00

I.4o

.62

1.80

-.96

-1.24

.05

,00 17

-6 1

)

.15

PQ

Score)Core

0

7

50

'(0)

True Score.

Response Pattern

IV:1 4 W

0 0

.00

.30

.38

.,20

-2.3 -2.0 -1.7

.33

.40

..3

A

,77

.4

.00

.43

1.07 1.2'

, Ability/Know1014. ScJIv

-1.0

.00 .00

.53 .62

.71

.33 .38

-.7 -.3 0.0

.00

.71

.87

.41

.00

.94

52

.00

.88

.97

59

00 .00 .01 .114.

.92 .96 .97 .98

.99 .99 .99 .99

.65 .74 .19 .8

99

99

.8,

78 .96

.99 .99

.99 .99

.91 .9

.99

.99

.9

0 1' 0

0 0 'I 0

1 0'0
1 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

I 6 1 o

1 1 0 0

Total

310 2u0 197 107. 54

87 .6 87 77 53

203 206 212 .211 208

149 152 la 149 121

'0 0 0 0 0

53

37

91

0

0

62

46

102

0

0

15

51

125

0

0

0

83

58

161

0

0

0

33

181

88

0

2.12 2.28 2..44 2." 2.69 2.76 2.85 3.22

111111111111111111111111111111111111111111
21 5 0 0 0 0 0 0 0 0

17

141

52

6 2

81 48

24 II

0 0

1 0 0

28 10 1 0

3 2

0 0 0 .001

102

59

234

0

0

0

III

:;4

296

0

0

110

41

346

0

0

0

88

26

370

0

0

0

69

16

350

0

0

29 29 23 16

6 7 8 8

319 247 200 149

0 0 .002 .001

0 0 .062 .127

0 0 .021 .063

0 0

00

-2.3

-1.7

I 0 0 0 -2,0

.004 LIU .006 .004 +2.0

6

6

70

.030

.381

.381

0

0

19

.071 .090

.655 .510

.570

0

.095

.392

.392

VM1111.=

-1.0

-.3

)2.7

+2.0

+2.0

23 30

0

0

0

0

42

0

0

63 115

0

0

0

0

181

0

0

0 0 0 0 0 a

0 0 0 0 0 0

000 1000 1000

272 401 504

0,

0

0

0

0

0

0

0

0

592 703 751 78.

0 0 .29 .61

0 0 .077 .329

0 0.7 2.0 6.2

0

1000 1000 1000 1000 1000 1000

Table 12.8
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An illustration of the MLE of 8 for all possible re
sponse patterns from

a test composed of four real
items. (All likelihoods are multiplied by 1009 to
reduce decimal values).
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(5) in the body of the table are the L(U10)'s for each

possible U for the 17 values of G. Each L(U19) is

multiplied by 1000 to eliminate decimal values.

(6) underlined in each row is the maximum !.(1110)

(7) down the right side are the values of 9 where the

underlined maximum likelihoods occur. These 9's an the

maximum likehood estimates (MLE) of 9 for each of the 16

possible U.

Note that the MLE for U = 0000 is - oo, and the MLE for U = 1111

is + oo. That is a characteristic of the MLE. The MLE will not give a

finite estimate of 9 unless the examinee has missed at least one item

and answered at least one item correctly. This limitation is not

serious because raw scores of 0% or 100% are usually rare.

The MLE of 9) 2.7 is due to the limited range of 9 used in this

example. A larger range of 0 would yield a more precise MLE of G.

The many cells with L(U19) = 0 in tho body of Table 12.8 are due

to the very unusual item #17.

12.9 Now compare in Table 12.8 the raw scores on the left with the

MLE's on the right. You can see that a raw score of 1 represents

Os from -2.3 to +2.0, an extreme range! A raw score of 2 represents

9s from -1.3 to greater than +2.7. A raw score of 3 represents 9's

from +1.3 to greater than +2.7.

The extreme range of 0, depending on the U's represented by a

single raw score, demonstrates well the inadequacy of using raw

score as an estimate of ability. The inadequacy of raw score as an

esmate of abilitj, is due to the fact that raw score cannot dis-

tingui5h chance success from knowledge success on an item. In

contrast, the MLE takes guessing into account by using the additional

information in the response pattern,



CHAPTER 13

Bayesian Modal Estimation of 0

13.1 Tne Bayesian Modal method of estimating 0 takes up where the MLE

stops. The proponents of the Bayesian Modal method (called Bayesians)

reason that if the distribution of 0 is known or assumed, then that

knowledge or assumption provides additional information which can be

used to more accurately estimate O.

13.2 Bayesians assume that 0 is distributed normally. The assumption

of normality means that the probability of any randomly-chosen examinee

having a 0 at the extremes is less than his probability of having a

located near the mean. The assumption of normality is made on an a

priori basis (i.e. before empirical evidence). Thus, it iscalled the

normal "prior" distribution.

13.3 Suppose the likelihood of 011U is very close to the likelihood of

OA, but that there ,ire many more examinee's at 02 than at 01. In

this case we would be right more often by estimating 0 at 02 than at

91. In doing so we would, in effect, be weighting our likelihood by

the number of examinees at the two 0 values. If we take this idea to

its logical extreme, we should weight all likelihoods by the proportion

of examinees at each value of 0 in order to reduce our errors.

_13.4 By assuming a normal distribution of 0 we can weight the like-,

lihciod by the relative proportions of area under the normal.turVe.

To do this we merely multiply the area within the. interval. of the norral'curve

at 0, designatedA0,1), times L(U19). Table 13.4 shows how this is done
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Table 13.4

An illustration of the Bayesian Modal Estimate of 6

for all possible response patterns from a test com

posed of four real items. (All likelihoods are multiplied

by 10,000 to reduce decimal values).



using the likelihoods from Table 12.8.

(1) the top row are points of A which are midpoints of

intervals of A.

(2) the 2nd and 3rd rows are the limits of the intervals.

(3) the 4th row is the proportion of area under the normal

curve-and within the interval.

(4) in the body of the table each column is the area in the 4th

row multiplied by the corresponding likelihood from Table 12.8

(times 100,000 to remove decimal values, i.e., L(U10) x./N(0,1)).

(5) the largest value in each row is underlined.

(6) the A for the underlined tare in the right

column. These are the Bayesian Modal Est mates (B1E) of A.

The B?E is called modal because, when we choose the largest value

in each row, we are choosing the mode of the distribution of L(1110) x

A(0,1).

13.5 Bayesian Modal Estimates are more conservative than MLEs (con-

servative means closer to zero, the mean of the normal prior distri-

bution). Note that with U=0000 and U=1111, the BMEs of A are

finite. The finiteness of A estimates of BME When either all or

no items ar answered correctly is a minor advantage of,BME.

"Note: There are several computational errors in Table 13.4. Ho ev

these errors do not affect the explanation of the concepts involve

tJv
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13.6 There is an active controversy between the Bayesians and the

proponents of the MLE. The Bayesians argue that MLE the Same as

a BME, if G is assumed to be distributed rectangularly. (A rectan

gular distribution of 9 means that there are equal numbers of exam-

inees at all 9 values, even at +00 and -oo). And so, say the Bayesians,

since a normal distribution of 9 is more reasonable to assume than a

rectangular distribution, the BME is a more accurate estimate of 9.

ThP proponents of MLE argue that the coincidence of the MLE

(which assumes no distribution of 9) being the same as a BME with

rectangular distribution is irrelevant. The important thing is that

MLE makes no assumption about the distribution of 9, whereas BME makes

the additional assumption, which will be sometimes. false.*

13.7 I shall not take sides in this,matter, because for me the point

is moot. The only computer program available to me at present is

OGIVIA-3 (See Chap. 15), which uses the BME. Therefore, I shall

continue to use BME until I have a program which uses MLE. At that

time I shall have to make ardecision.

13.8 Another type of Bayesian estimation is called Owen's Bayesian,

after its inventor, R. L. Owen (1975). The Owen's Bayesian method

used primarily in tailored testing (See Chap. 17).

*I apologize to both sides of this complex issue for this meager

representation of their positions.

96

94



CHAPTER 14

Assumptions

14.1 There are 4 basic assumptions of IRT. The first of these fs a

minor assumption. ':. is an assumption of any test theory and withob,

which there wouldbe no justification for testing.

Assumption #1: The Know-Correct Assumption: if the examinee

knows the correct answer to the item, he will answer it correctly.*

We have probably all violated this assumption while taking tests by

marking a different choice than we intended to mark. Occasionally,

an examinee will inadver ently skip an item, and then mark all the.

rests of his= answer's the wrong places. This is merely a clerical

error, but there is no provision for it in any test theory. Another

way to state the first assumption is: if he got the item wrong,

then he did not know the answer.

14.2 Assumption #2: The Normal Ogive Assumption: The IRF takes the

form of the normal ogive. This is the probleM, mentioned in Se_tion

3.3, which deterred Lord's work for 10 years. The difficulty lay with

3 parts of the IRF.

a. The lower asymptote

b. The upper asymptote

c. The middle or rapidly rising part of the IRF

*rhe reader should take careful note that the inverse of this assump-

tion is NOT made. What is, it is NOT ASSUMED that if the examinee

gets the item correct,he knows the answer, I emphSsize this distinc-

tion because many persons upon first reading of assumption #1 misread

it as its inverse.
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(1) As previously noted, the c-value of an IRF is often not

1/A. This is the case with observed parts of the lower asymptote.

But what about the unobserved part "2 If an item from the SAT with

c = .09 were given to extremely low A persons such as kindergarten

children or mentally retarded persons, would the lower tail of the

IRF rise to I/A?

(2) It has been charged by,Hoffman '1962), that tests may

penalize extremely high ability persons, because they know too nuch.

That is, they consider factors far beyond the intended scope of the

item, and therefore get it wrong. If that were the case, then -the IRF

woulid curve down away from the upper asymptote at high A's. This has

been called the Banesh Hoffmann Effect.

1.

(3) It was not known that the IRF was. monotonic, and that its

.general shape was that of a normal ogive.

In 1965 Lord published a massive study with a sample size greater

than 100,000. Specifically, I._ Found:

a. the lower tail of the IRF did not rise for almost all. items.

The very few items that did rise, did so to a very stall

extent.

b. nolevidence of the Banesh Hoffman Effect.

c. good indications that the IRF is strictly monotonic.
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